GENERALIZED CONVEX KERNELS

BY

A. M. BRUCKNER(*) AND J. B. BRUCKNER

ABSTRACT

The notion of the convex kernel of a set D is generalized to that of the n -th order kernel of D. Such kernels are studied for compact, simply connected subsets of the Euclidean plane. In particular, it is shown that under certain circumstances [see Theorem 4 and also section 5], these kernels have rather simple structures.

1. Introduction. Horn and Valentine [3] have generalized the notion of convex set to that of L_n set. A set D in the Euclidean plane E_2 is called an L_n set if for every pair of points x and y in D , there is a polygonal line of at most n segments lying in D which joins x to y . Such sets can be used to approximate (in the sense of the Hausdorff metric) any compact, connected set (see [1]). The results of $[1]$ have been extended by McCoy [4] to complete locally compact convex metric spaces. For some work concerning partitions of Euclidean spaces into L_n sets, the reader is referred to Ceder [2].

The convex kernel of a set D is defined to be the set of points x in D such that for all y in D, the segment joining x to y is contained in D. It is well known that the convex kernel of a set is itself convex.

The purpose of this note is to study the nth order kernel of D , by which we mean the set of points x in D such that for each y in D there is a polygonal line of at most n segments lying in D , and joining x to y.

If D is the boundary of a square, for example, the 2nd order kernel consists of the four corners of the square. By considering examples similar to this, one can easily verify that the *n*th order kernel of a set need not even be connected if $n > 1$. The essential difference between the cases $n = 1$ and $n > 1$ is that there is a unique line determined by any pair of points x and y, but there is an infinitude of polygonal lines with at most *n* segments joining x to y if $n > 1$. As we shall see, the assumption that D is simply connected partially overcomes this difficulty.

2. Notation and terminology. In the sequel, D will denote a compact, simply connected set in E_2 . If B is a set, then δB will denote its boundary and $\sim B$ its complement. We shall use the notation $\langle p_0, p_1, ..., p_n \rangle$ for the *n*-sided polygonal

Received April 21, 1964.

^(*) One of the authors was supported by NSF grant GP-1592.

line (*n*-line) joining p_0 to p_n with $p_1, ..., p_{n-1}$ consecutive, intermediate vertices It will always be assumed that $\langle p_0, ..., p_n \rangle$ has no self intersections. If x and y are points in D, then by $\rho(x, y)$ we shall mean the minimum number of segments that a polygonal line lying in D and joining x to y can have. A full L_n set is an L_n set for which there exist $x, y \in D$ with $\rho(x, y) = n$. If $x \in D$, then $K_x^n = \{y: \rho(x, y) \leq n\}$. If no confusion can arise, we shall write K_x in place of K_x^n . When considering a sequence $\{x_i\}$ of points of D, we shall, for simplicity of notation, write K_i for K_{x_i} . We shall denote by Kⁿ the nth order kernel of D. Clearly $K^n = \bigcap_{x \in D} K^n_x$.

3. Some properties of K_x . In this section we record four lemmas which we shall use in the next section. Lemma 1, below, will be used frequently in the sequel.

LEMMA 1. If $x \in D$ and $y, z \in K_x$ and $\langle y, z \rangle \subset D$, then $\langle y, z \rangle \subset K_x$.

Proof. Let $L_y = \langle x, y_1, ..., y_{n-1}, y \rangle$ and $L_z = \langle x, z_1, ..., z_{n-1}, z \rangle$ be *n*-lines in D joining x to y and z respectively. The n-lines L_y and L_z along with $\langle y, z \rangle$ determine a figure P which is the union of a finite number of simple closed polygons (with interiors) some of which may degenerate into segments. Since D is simply connected, $P \subset D$. If $z \in \langle y_{n-1}, y \rangle$ or $y \in \langle z_{n-1}, z \rangle$, the conclusion follows trivially. Likewise the conclusion is immediate if either L_y or L_z intersects $\langle y, z \rangle$ other than at the endpoints. If not, then let $w \in \langle y, z \rangle$. The point w is in one of the polygons P' of P. Each of the vertices $u_1, ..., u_r$ of P' is one of the y_i , one of the z_j or a point at which a segment of L_y intersects a segment of L_z . Let $T = \{v \in P': \langle w, v \rangle \subset P'\}.$ It is clear that there exists q, $1 \leq q \leq r$, such that $u_q \in T, u_q \neq y, u_q \neq z$. If for some s, $1 \leq s \leq n-1, u_q = y_s$ then the $(s + 1)$ -line $\langle x, y_1, ..., y_s, w \rangle$ is contained in P and $w \in K_x$. A similar n-line exists in case $u_q = z_s$ for some s. If u_q is a point of intersection of L_y and L_z , then the extension of the segment $\langle u_q, w \rangle$ (into another polygon *P*^{*n*} of *P*) intersects the boundary of *P* at a point t . It is easy to verify that there is an n -line lying in P having terminal side $\langle t, w \rangle$.

LEMMA 2. If $x \in D$, then K_x^n is a compact, simply connected L_{2n} set.

Proof. The compactness of K_x^n is obvious.

That K_x is an L_{2n} set follows trivially from the fact that any two points of K_x^n can be joined by a 2n-line whose middle vertex is x.

It remains to show that $\sim K_x^n$ has no bounded components. Assume $\sim K_x^n$ has a bounded component C. Let $y \in C$ and let $\langle y_1, y_2 \rangle$ be a segment through y where $y_1, y_2 \in \delta C$, and there are no other points of δC on $\langle y_1, y \rangle$ and $\langle y, y_2 \rangle$. Since boundary points of C must also be boundary points of K_x^* , and since K_x^* is closed, it follows that y_1 and y_2 are in K_x^* . Now each point z of $\langle y_1, y_2 \rangle$ is in D, otherwise the component of $\sim D$ containing z would be bounded. By Lemma 1, $y \in K_x^n$ contradicting the hypothesis $y \in C$. Hence K_x^n is simply connected.

LEMMA 3. Let $x_1, x_2, ..., x_m$ be points of D and let $M = K_1 \cap K_2 \cap ... \cap K_{m-1}$. *Then* \sim (*M* \cup *K_m*) has no bounded components.

Proof. Suppose that $\sim (M \cup K_m)$ has a bounded component C. Since C is a bounded, open, connected set, it can be shown that there exist three points $y_1, y_2, y_3 \in \delta C$ such that the open segments $(y_1, y_2), (y_2, y_3)$ and (y_1, y_3) are contained in C. Now since $\delta C \subset M \cup K_m$, two of these three points, say y_1 and y_2 , are in *M* or in K_m . In either case, it follows from Lemma 1 that the entire segment $\langle y_1, y_2 \rangle$ is in M or in K_m . This contradicts the existence of a bounded component of $\sim (M \cup K_m)$.

LEMMA 4. *Let* $x_1, ..., x_m$ be points of D. Then $K_1^n \cap K_2^n \cap ... K_m^n$ is a compact, *simply connected L2~ set.*

Proof. That $K_1^n \cap ... \cap K_m^n$ is compact follows trivially from the compactness of $K_1^n, ..., K_m^n$. If $m = 1$, the theorem reduces to Lemma 2. Let $M = K_1^n \cap \cdots \cap K_{m-1}^n$. Assume M is a simply connected, L_{2n} set. Let y, z be points of $M \cap K_{m}^{n}$; let $L = \langle y, y_{n-1}, ..., y_1, x_m, z_1, ..., z_{n-1}, z \rangle$ and $L_M = \langle y, v_1, v_2, ..., v_{2n-1}, z \rangle$ be 2n-lines joining y and z lying in K_m^n and M respectively. These lines determine a figure P which is a union of a finite number of simple closed polygons with interiors some of which may degenerate into segments. We may further assume that L_M is simple and no line segment joining nonadjacent vertices of L_M lies entirely in P. Since $\sim (M \cup K_m^n)$ has no bounded components, $P \subset M \cup K_m^n$. We shall show that there is a polygonal path in $K_m^n \cap M$ having at most the number of segments of L_M .

For each $v \in L_M$ let

$$
s(v) = \sup \{t \in L_M : \langle v, t \rangle \subset P \text{ and } (v, t) \cap \langle z_{n-1}, z \rangle \text{ is empty}\}\
$$

where the supremum is taken with respect to the natural ordering of L_M from y to z. We shall denote this ordering by " \prec ".

We first show that if $v \in K_m$, then $s(v) \in K_m^n$. Now, if $s(v) \in \langle z_{n-1}, z \rangle$, the conclusion is trivially true. If $s(v) \notin \langle z_{n-1}, z \rangle$, then for some point p on L, the points v *s(v)* and *p* are collinear. If $p \in \langle z_{n-1}, z \rangle$, then $s(v) \in \langle v, p \rangle$ and by Lemma 1, $s(v) \in K_m^n$. If $p \in \langle z_m, z_{m+1} \rangle$, $m \neq n-1$, then the polygonal line $\langle x_m, z_1, ..., z_m, p, s(v) \rangle$ lies in D and has at most n segments so that $s(v) \in K_m^n$. A similar polygonal path exists if $p \in \langle y_{m+1}, y_m \rangle$ ($m \neq n-1$ unless $p = y_{n-1}$).

It is clear that if $v_i \le v \lt v_{i+1}$ and $(v_i, v_{i+1}) \cap \langle z_{n-1}, z \rangle$ is empty, then $v_{i+1} \leq s(v)$. If $s(v) \in \langle v_i, v_{i+1} \rangle \cap \langle z_{n-1}, z \rangle$, then the line $\langle v, s(v), z \rangle$ has at most as many segments (two or, in the degenerate case $s(v) = z$, one) as $\langle v, v_{i+1}, \ldots, v_{2n-1}, z \rangle$. Thus the polygonal line

$$
\langle y, s(y), s^2(y), \ldots, z \rangle
$$

has at most 2n segments. It follows from Lemma 1 that this 2n-line lies in $K_m^n \cap M$.

The simple connectedness of $K_m^n \cap M$ now follows from the simple connectedness of K_1, \ldots, K_m .

4. The nth order kernel. We now proceed to study the nth order kernel of D, In Theorems 1 and 3 we obtain representations for K^* . Theorem 2 shows that K^* shares some of the properties of the sets K_x obtained in Lemma 2. In Theorem 4 we show that for a full L_{2n} set, $Kⁿ$ is itself an L_2 set.

THEOREM 1. Let D' be a dense subset of D. Then $K^n = \bigcap_{x \in D} K^n_x$.

Proof. Let $R = \bigcap_{x \in D} K_x^n$. Trivially, $K^n \subset R$. Now assume $y \in R$. Then $y \in K_x^n$ for each $x \in D'$. Equivalently $D' \subset K_{\nu}^{n}$. But K_{ν}^{n} is closed so that K_{ν}^{n} contains the closure of D' which is D. Thus $D \subset K_v^n$ and $y \in K^n$ so that $R \subset K^n$.

THEOREM 2. The nth order kernel is a compact, simply xconnected, L_{2n} set.

Proof. Let $D' = \{x_1, ..., x_m, ...\}$ be a countable, dense subset of D; let $M_m = K_1^n \cap ... \cap K_m^n$. The sets M_m form a decreasing sequence of compact, L_{2n} sets whose intersection K^n is therefore a compact, L_{2n} set (see [1]: Theorem 2). The simple connectedness of K follows immediately from the connectedness of K^* and the simple connectedness of K_1^*, K_2^*, \ldots .

THEOREM 3. Let $S = \bigcap K_x^n$, the intersection being taken over all points $x \in \delta D$. *Then* $S = K^n$.

Proof. Trivially $K^n \subset S$. Let $x \in D \sim K^n$ and let $y \in \sim K^n$. If $y \in \delta D$ then $x \in D \sim S$. If y is an interior point of D, then the component of $\sim K_x^{\pi}$ containing y must contain a boundary point of D, for otherwise K_x^n would not be simply connected. Thus $x \notin S$ and $S \subset K^n$.

The corollary below generalizes [3 : Theorem 1.4].

COROLLARY. *If y* \in K_x^n *for all x*, $y \in \delta D$ then *D* is an L_n set.

Proof. If, for every $x \in \delta D$, $y \in K_x^n$ for all $y \in \delta D$, then by Theorem 3, $\delta D \subset K^n$ Since K^n is simply connected, it follows that $D \subset K^n$. Thus for each $x, y \in D$ we have $\rho(x, y) \leq n$.

LEMMA 5. Let D be a full L_{2n} set, let $x, y \in K^n$ and let α be a point of D such *that* $\rho(\alpha, x) = \rho(\alpha, y) = n$. Then $K_x^1 \cap K_y^1 \cap K_\alpha^n$ is non empty.

Proof. We first show that $K_x^1 \cap K_y^1$ is non empty. Since D is a full L_{2n} set, there are points β and γ with $\rho(\beta,\gamma) = 2n$. Let $L_y = \langle \beta, b_{n-1},...,b_1, y, c_1,...,c_{n-1}, \gamma \rangle$ and $L_x = \langle \beta, \beta_{n-1}, ..., \beta_1, x, \gamma_1, ..., \gamma_{n-1}, \gamma \rangle$ be 2 *n*-lines joining β and γ via x and y respectively. The lines L_x and L_y determine a figure P which is the union of a finite number of simple closed polygons with interiors, some of which may degenerate into segments.

If $x \in L_y$ (or $y \in L_x$) then $\langle x, y \rangle \subset L_y(\langle x, y \rangle \subset L_x)$, for otherwise we would have $\rho(\beta,\gamma) < 2n$; hence $\langle x,y \rangle \subset K_x^1 \cap K_y^1$.

If $x \notin L_y$ and $y \notin L_x$ then x and y are accessible to the interior of P. There must be a segment $\langle x, v \rangle$ lying in P with $v \in L_y$ since $\rho(\beta, \gamma) = 2n$. Similarly there is a segment $\langle y, t \rangle \subset P$ with $t \in L_x$. It is immediately clear that

and
\n
$$
t \in \langle \beta_2, \beta_1, x, \gamma_1, \gamma_2 \rangle
$$
\n
$$
v \in \langle b_2, b_1, y, c_1, c_2 \rangle.
$$

Several situations can occur.

If $t \in \langle \beta_1, x, \gamma_1 \rangle$ (or $v \in \langle b_1, y, c_1 \rangle$) then $v \in K_x^1 \cap K_y^1$) ($t \in K_x^1 \cap K_y^1$).

If $t \in \langle \beta_2, \beta_1 \rangle$ and $v \in \langle b_2, b_1 \rangle$ (or $t \in \langle \gamma_1, \gamma_2 \rangle$ and $v \in \langle c_1, c_2 \rangle$) then it can be verified that $\langle x, v \rangle \cap \langle y, t \rangle = {p} \in P$ and $p \in K_x^1 \cap K_y^1$.

If $t \in \langle \beta_2, \beta_1 \rangle$ and $v \in \langle c_1, c_2 \rangle$ (or $t \in \langle \gamma_1, \gamma_2 \rangle$ and $v \in \langle b_2, b_1 \rangle$) then it can be verified that one of the vertices of the hexagon $\langle y, t, \beta_1, x, v, c_1, y \rangle$ $(\langle y, t, \gamma_1, x, v, b_1, y \rangle)$ is in $K_x^1 \cap K_y^1$.

We proceed to show that $K_x^1 \cap K_y^1 \cap K_x^*$ is non empty. Let p be a point of $K_x^1 \cap K_y^1$. The lines $L_1 = \langle x, a_{n-1},...,a_1, a, a_1,...,a_{n-1},y \rangle$ and $L_2 = \langle x, p, y \rangle$ determine a figure P^* . An analysis of P^* similar to the above analysis of P, but using the fact that any polygonal path between x and α or y and α must have at least *n* segments, verifies that there is a point $v \in P^*$ which lies in $K_x^1 \cap K_y^1 \cap K_x^2$.

THEOREM 4. Let D be a full L_{2n} set. Then $Kⁿ$ is an L_2 set.

Proof. If K^n is not an L_2 set, then there are points $x, y \in K^n$ such that for each $t \in K_x^1 \cap K_y^1$, there exists $\alpha(t) \in D$ with $t \in \sim K_{\alpha(t)}^n$. Since $K_x^1 \cap K_y^1$ is compact, there exist points $\alpha_1, \alpha_2, ..., \alpha_n \in D$ such that for each $t \in K_x^1 \cap K_y^1$, $t \in \sim K_y^n$ for some $i, 1 \le i \le p$. Each of the α_i satisfies $\rho(\alpha_i, x) = \rho(\alpha_i, y) = n$.

We will show that $K_1^n \cap K_2^n \cap ... \cap K_q^n \cap K_x^1 \cap K_y^1$ is not empty for $q = 1,2,...$. Now it follows from Lemma 5, that for each α_i there is a point $t_i \in K_x^1 \cap K_y^1 \cap K_i^n$. Hence the conclusion is valid for $q = 1$. Assume the conclusion holds for $q - 1$. Then there exists $t \in K_1^n \cap ... \cap K_{q-1}^n \cap K_x^1 \cap K_y^1$. By Lemma 5 we have the existence of t' in $K_q^n \cap K_x^1 \cap K_y^1$. The 2-lines $L = \langle x, t, y \rangle$ and $L' = \langle x, t', y \rangle$ determine a figure P which is the union of at most two simple closed polygons with interior, some of which may degenarete into segments. Since D is simply connected, $P \subset D$. Now $\langle x, \rangle$ is not contained in P. For then we would have $\langle x, y \rangle \subset K^n$ contrary to the assumption that x and y cannot be joined by a 2-line in K ^{\cdot}.

If L and L' intersect at a point $v, v \neq x, y$, then $v \in K_1^n \cap ... \cap K_q^n \cap K_x^1 \cap K_y^1$.

If $L \cap L' = \{x\} \cup \{y\}$ then for one of the lines L (or L') we have $\langle x,t$ (or t'), $y\rangle \sim \{x\} \sim \{y\}$ \subset Int P^{*} where P^{*} is the figure determined by $\langle x,t'(\text{or } t),y\rangle$ and $\langle x,y\rangle$. It is easily verified that $t(\text{or } t') \in K_1^* \cap ... \cap K_q^n \cap K_x^1 \cap K_y^1$. By induction there is a point $v \in K_1^n \cap ... \cap K_p^n \cap K_x^1 \cap K_y^1$ contrary to the assumption that the sets $\sim K_i^n$ cover $K_x^1 \cap K_y^1$.

5. Kernels of nowhere dense sets. Throughout this section D is nowhere dense

in addition to being compact and simply connected. The following result is **easy** to verify and the proof is ommitted.

LEMMA 6. Let x, $y \in D$. If L_p and L_q are p- and q-lines respectively, $p \leq q$, *joining* x to y and $L = \{t : t \in L_p \cap L_q\}$ then L is an r-line joining x to y with $r \leq p$.

The following theorems can be proved by applications of Lemma 6.

THEOREM 5. Let D be a full L_{2n} $[L_{2n-1}]$ set; let x, $y \in D$ with $\rho(x, y) = 2_n$ $\left[\rho(x,y) = 2n - 1\right]$. If $\langle x, \alpha_1, ..., \alpha_n, ..., \alpha_{2n-1}, y \rangle$ $\left[\langle x, \alpha_1, ..., \alpha_{n-1}, \alpha_n, ..., \alpha_{2n-2}, y \rangle$ *is a 2n-line* $[(2n - 1)$ -line] joining x to y then $\alpha_n \in K^n \left[\langle \alpha_{n-1}, \alpha_n \rangle \subset K^n \right]$.

THEOREM 6. Let D be a full $L_{2n}[L_{2n-1}]$ set. Then $Kⁿ$ is a single point $[Kⁿ$ is a *single segment].*

THEOREM 7. Let D be a full $L_{2n}[L_{2n-1}]$ set and for $p > n$, let K^p denote its pth *order kernel; let* $p = n + q$. Then K^p *is an* $L_{2q}[L_{2q+1}]$ *set.*

A basic difference between the cases in which D is nowhere dense and the general case is that in the former, any two points of D determine a unique path of fewest segments (as Lemma 6 illustrates), whereas this is not so in the general case. Theorems 5 and 6 obviously have no counterparts in the general case. We suspect that Theorem 7 does have an analogue in the general case but have been unable to prove this. It is worth noting that Theorem 6 implies that the nth order kernel of a full $L_{2n}[L_{2n-1}]$ set is non empty in case D is nowhere dense. This is not necessarily true in the general case. For example, if D is the simply connected **set** determined by a triangle whose sides are extended one unit in each direction, then D is a full L_2 set with an empty first order (convex) kernel.

6. Some conclusing remarks. We conclude with several observations. Simple examples show that $Kⁿ$ might be contained entirely in the interior of D or entirely in δD , even if D is bounded by a simple Jordan curve.

It can be shown that if $x \in D$ then the boundary of a component of $D \sim K_x^n$ can be decomposed into two sets A and B, where $A \subset \delta D$ and B is either a subinterval of a single segment of an n-line in K_x^n or empty. No corresponding statement can be made for the boundary of a component of $D \sim K^n$.

REFERENCES

1. Bruckner, A.M., and Bruckner, J.B., 1962, On L_n sets, the Hausdorff metric, and con**nectedness,** *Proc. Amer., Math. Soc.,* 13, 765-767.

2. Ceder, J.G., 1963, Partitions of Euclidean spaces into dense L,-connected sets, *Duke Math. J.,* 30, 367-373.

3. Horn, Alfred, and Valentine, F.A., 1949, Some properties of L sets in the plane, *Duke Math. J.,* 16, 131-140.

4. McCoy, J.W., An extension of the concept of L_n sets, *Proc. Amer. Math. Soc.* (in press),

UNIVERSITY OF CALIFORNIA, SANTA BARBARA AND SANTA BARBARA) CALIFORNIA