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ABSTRACT 

The notion of the convex kernel of a set D is generalized to that of the n-th 
order kernel of D. Such kernels are studied for compact, simply connected sub- 
sets of the Euclidean plane. In particular, it is shown that under certain 
circumstances [see Theorem 4 and also section 5], these kernels have rather 
simple structmes. 

1. Introduction. Horn  and Valentine [3] have generalized the notion of  
convex set to that of  L ,  set. A set D in the Euclidean plane E2 is called an L ,  set if 
for  every pair of  points x and y in D, there is a polygonal line of  at most  n segments 
lying in D which joins x to y. Such sets can be used to approximate (in the sense of  
the Hausdorff  metric) any compact ,  connected set (see [1]).  The results of  [1] 
have been extended by McCoy [41 to complete locally compact  convex metric 
spaces. For  some work concerning partit ions of  Euclidean spaces into L, sets, 
the reader is referred to Ceder [2].  

The convex kernel of  a set D is defined to be the set of  points x in D such that 
for  all y in D, the segment joining x to y is contained in D. It is well known that 
the convex kernel of  a set is itself convex. 

The purpose of  this note is to study the nth order kernel of  D, by which we 
mean the set of  points x in D such that for each y in D there is a polygonal line 
of  at most n segments lying in D, and joining x to y. 

If  D is the boundary  of  a square, for example, the 2nd order  kernel consists of  
the four  corners of  the square. By considering examples similar to this, one can 
easily verify that the nth order  kernel of  a set need not  even be connected if n > 1. 
The essentialdifference between the cases n = 1 and n > 1 is that  there is a unique 
line determined by any pair of  points x and y, but there is an infinitude of  polygonal 
lines with at most n segments joining x to y if n > 1. As we shall see, the assumption 
that  D is simply connected partially overcomes this difficulty. 

2. Notat ion and terminology. In the sequel, D will denote a compact ,  simply 
connected set in E2. If  B is a set, then 6B will denote its boundary  and ~ B its 

complement.  We shall use the notat ion (P0, Pl . . . .  , pn)for the n-sided polygonal 

Received April 21, 1964. 
(*) One of the authors was supported by NSF grant GP-1592. 

27 



28 A.M. BRUCKNER AND J. B. BRUCKNER [March 

line (n-line)joining Po to p, with Pl ..... P,-a consecutive, intermediate vertices 
It will always be assumed that <Po . . . .  , p,) has no self intersections. I fx  and y are 
points in D, then by p(x, y) we shall mean the minimum number of segments that 
a polygonal line lying in D and joining x to y can have. A full L ,  set is an L ,  set 
for which there exist x, y e Dwithp(x, y) = n.I fx e D,then K~ = {y: p(x, y) < n}. 
If no confusion can arise, we shall write K~ in place of K~. When considering a 
sequence {x~} of points of D, we shall, for simplicity of notation, write K~ for K~,. 
We shall denote by K" the nth order kernel of D. Clearly K" = f ' ] ~  D K~". 

3. Some properties of K~. In this section we record four lemmas which we 
shall use in the next section. Lemma 1, below, will be used frequently in the sequel. 

LEMMA 1. I f  x e D  and y, zeK, ,  and ( y , z ) = D ,  then ( y , z )  c K~. 

Proof. Let Ly = {x, Yl . . . . .  Y,-1, Y) and L,=(x ,  zl, ..., z,-1, z) be n-lines in 
D joining x to y and z respectively. The n-lines Ly and L,  along with {y, z) deter- 
mine a figure P which is the union of a finite number of simple closed polygons 
(with interiors) some of which may degenerate into segments. Since D is simply 
connected, P c D. Ifz E (y ,_  1, Y) or y e (z,,_ ~, z),  the conclusion follows trivially. 
Likewise the conclusion is immediate if either L~ or L,  intersects (y,  z)  other 
than at the endpoints. If not, then let w e (y,  z). The point w is in one of the 
polygons P '  of P. Each of the vertices u t . . . . .  ur of P '  is one of the Yi, one of the zj 
or a point at which a segment of Ly intersects a segment of L,. Let 
T = {v ~ P ' :  (w, v) ," P'}. It is clear that there exists q, 1 < q =< r, such that 
u ~ T , u ~  ~ y, uq ~ z. If  for some s, 1 < s < n - 1, u~ = y, then the(s + 1)-line 
(x, y~, ..., y~, w) is contained in P and w~K~,. A similar n-line exists in case 
u~ = z, for some s. If u~ is a point of intersection of Ly and L,, then the extension 
of the segment (uq, w) (into another polygon P" of P) intersects the boundary of P 
at a point t. It is easy to verify that there is an n-line lying in P having terminal 

side (t,  w). 

LEMMA 2. I f x  e D, then K~ is a compact, simply connected L2, set. 

Proof. The compactness of K~ is obvious. 
That K~ is an L2n set follows trivially from the fact that any two points of 

K~ can be joined by a 2n-line whose middle vertex is x. 
It remains to show that ~ K~ has no bounded components. Assume ~ K] has 

a bounded component C. Let y e C and let (Yt, Y2) be a segment through y 
where Yl,Y2 E 6C, and there are no other points of 6C on (Yi ,Y)  and (Y, Y2)- 
Since boundary points of C must also be boundary points of K], and since K~ is 
closed, it follows that Yl and Y2 are in K~. Now each point z of (Yl, Y2) is in D, 
otherwise tbe component of ~ D containing z would be bounded. By Lemma 1, 
y e K~ contradicting the hypothesis y e C. Hence K~ is simply connected. 
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LEMMA 3. Letx l ,x2 , . . . , x=bepointsofDandle tM = Kt  AK2 N ... r3Km-1. 
Then ,~ (M t3 Kin) has no bounded components. 

Proof. Suppose that ~- (M L7 Kin) has a bounded component C. Since C is a 
bounded, open, connected set, it can be shown that there exist three points 

Yt, Y2, Y3 ~ 6C such that the open segments (Yt, Y2), (Y2, Y3) and (Yt, Y3) are con- 
tained in C. Now since 6C c M u Kin, two of these three points, say Yl and Y2, 
are in M or in KIn. In either case, it follows from Lemma 1 that the entire segment 
(Yt, Y2) is in M or in Kin. This contradicts the existence of  a bounded component 

of ~ (M u Kin). 

LEMMA 4. Letxt , . . . ,xmbe pointsofD. ThenK~ t3K~ r~... Knm isa compact, 
simply connected L2~ set. 

Proof. That K~ ~ . . .  n K~, is compact follows trivially from the compactness 
n i1 n PI of K, . . . ,Km.  If  m = 1, the theorem reduces to Lemma 2. Let M = K t n . . .  o Kin- t. 

Assume M is a simply connected, L2n set. Let y ,z  be points of M n K ~  ; let 
L = (Y,Yn-1, ...,Yl,Xm, Zl .... , zn- t , z )andLM=(Y,Vl ,V2," ' ,v2~- t , z )  be2n'lines 
joining y and z lying in K~m and M respectively. These lines determine a figure P 
which is a union of  a finite number of  simple closed polygons with interiors some of 
which may degenerate into segments. We may further assume that LM is simple 
and no line segment joining nonadjacent vertices of LM lies entirely in P. Since 
~ (M u K~) has no bounded components, P c M u K~,. We shall show that 
there is a polygonal path in K~ n M having at most the number of segments of Lu. 

For each v ~ L~ let 

s(v) = sup {t ~ L~t : (v, t) c P and (v, t) ~ (zn- 1, z )  is empty} 

where the supremum is taken with respect to the natural ordering of  LM from y 
to z. We shall denote this ordering by " < "  

We first show that if v e Kin, then s(v) ~ K~. Now, if s(v) ~ (z ,_ 1, z) , the  conclu- 
sion is trivially true. If  s(v) ~ (zn_ 1, z), then for some point p on L, the points v 
s(v) and p are collinear. I f  p ~ ( z , _ t , z ) ,  then s (v )e (v ,p )  and by Lemma 1, 
s(o) e K~,. If  p ~ (Zm,Zm+ 1), m # n -- 1, then the polygonal line (Xm,ZD...,Zm,P,S(V)) 
lies in D and has at most n segments so that s(v) e K~m . A similar polygonal path 
exists i f p  ~ (Ym+l,Ym) (m :# n -- 1 unless p = Y,-1). 

It is clear that if v,_<v.<v,+t and (v~ ,o ,+l )n(z ,_ l , z )  is empty, then 
vi+ 1< s(v). If  s(v) ~ (vi,v~+l) n (z,_ 1, z), then the line (v,s(v),z) has at most as 
many segments (two or, in the degenerate case s(v) = z, one) as (v,v~ + 1 ..... v2n- l,z).  
Thus the polygonal line 

<y, s(y), s2(y), ..., z )  

has at most 2n segments. It follows from Lemma 1 that this 2n-line lies in 

r ' ,  riM. 
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The simple connectedness of K'm n M now follows from the simple connected- 
/less of KI, ...,Km. 

4. The nth order kernel. We now proceed to study the nth order kernel of D, 
In Theorems 1 and 3 we obtain representations for K ' .  Theorem 2 shows that K ~ 
shares some of the properties of the sets Kx obtained in Lemma 2. In Theorem 4 
we show that for a full L2n set, K n is itself an L2 set. 

THEOREM 1. Let D' be a dense subset of D. Then K ~ = [")xeD, K~. 

Proof. Let R = Nxea 'K~.  Trivially, K" c R. Now assume y e R. Then y ~ K~ 
for each x ~ D'. Equivalently D' c K~. But K ; i s  closed so that K~ contains the 

n closure of D' which is D. Thus D c Ky and y e K ' s o  that R c K N. 

TrIEOREr, i 2. The nth order kernel is a compact, simply xconnected, LzN set. 

Proof. Let D ' =  {xl ..... xm .... } be a countable, dense subset of D; let 
Mm = K~ n . . .n  K~. The sets Mm form a decreasing sequence of compact, 
L2n sets whose intersection K ~ is therefore a compact, L2, set (see 1"1]: Theorem 2). 
The simple connectedness of K follows immediately from the connectedness of K n 

and the simple connectedness of K~,K~ .... .  

THEOREM 3. Let S = N K~, the intersection being taken over all points x ~ ~D. 

Then S = K ~. 
Proof. Trivially K* c S. Let x e D ,~ K* and let y ~ ~ K~. If y e tSD then 

x ~ D ~ S. If  y is an interior point of D, then the component of ~ K~ containing 

y must contain a boundary point of D, for otherwise K~ would not be simply 

connected. Thus x ~ S and S c K ". 
The corollary below generalizes [3 : Theorem 1.4]. 

COROLLARY. I f  y e K~for all x, y ~ ~D then D is an L n set. 

Proof. If, for every x ~ tSD, y e K~ for all y e tSD, then by Theorem 3, tSD c K ~ 
Since K" is simply connected, it follows that D c K *. Thus for each x ,y  ~ D we 
have p(x, y) <= n. 

LEM~A 5. Let D be a full  L2n set, le tx ,y  ~ K ~ and let ~ be a point of D such 

that p(ct, x) = p(~, y) = n. Then K~ ~ K~ N K~is non empty. 

Proof. We first show that K~ n K~ is non empty. Since D is a full L2~ set, there 
are points fl and ~ with p(fl,y) = 2n. Let Ly = ([3 ,b ,_l , . . . ,b l ,y ,c l , . . . ,c~- l ,Y)  
and L~ = (fl, fin_ 1 ... . .  ill, x, Yl .... , Y~- 1, Y) be 2 n-lines joining fl and y via x and y 
respectively. The lines Lx and Ly determine a figure P which is the union of a finite 
number of simple closed polygons with interiors, some of which may degenerate 
into segments. 

I fx  E Ly(or y e L~) then ( x , y )  c Ly( (x ,y )  c Lx), for otherwise we would have 
p(fl,~) < 2n; hence ( x , y )  c K~ nK~.  
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I fx  $Ly and y $ L~ then x and y are accessible to the interior of P. There must 
be a segment ( x , v )  lying in P with v e Ly since p(/3,y) = 2n. Similarly there is a 
segment (y ,  t )  = P with t e L,,. It is immediately clear that 

and 
0 E (b 2 ,b l ,y ,c l ,c2) .  

Several situations can occur. 
1 1 If t e (/~ 1,x,Y 1 ) (or v e ~ b 1,y,c 1 ~) then v e K~ t N Ky) (t eKx ~ K~ ). 

If  t e (fl2,fll) and v e ~b2, b l )  (or t e ~1,Y2) and v e ~cl,c2)) then it can be 
verified that ( x , v )  t 3 ( y , t )  = {p} e P  and p r)r r, 

If te~f l2 , f l l )  and ve  ~cl,c2) (or t e ~3'1,~2) and ve  (b2 ,b l ) )  then it can be 
verified that one of the vertices of  the hexagon ~y, t, ill, x, v, cl, y )  
(~y, t, ~i, x, v, bl, y))  is in K~ r~ K, 1. 

We proceed to show that K~ t3 1 Ky t3 K~ is non empty. Let p be a point of 
K~ t3K~. The lines L1 = ~x,a ,_ l , . . . ,a l ,c t ,~ l , . . . ,~ ,_~ ,y)  and L2 = ~x,p,y)  
determine a figure P*. An analysis of P* similar to the above analysis of P, but 
using the fact that any polygonal path between x and ~ or y and ~ must have at 

1 n least n segments, verifies that there is a point v e P* which lies in K~ t3 K f ~  K,. 

Tt-mOl~M 4. Let D be a ful l  L2~ set. Then K n is a n  L 2 set. 

Proof. If K ~ is not a n  L 2 s e t ,  then there are points x ,y  e K ~ such that for each 
t e K x ~ K~, there exists ~(t) e D with t e ~ K~t). Since K~ ~ K x is compact, 
there exist points cq, ~t2,... , % e D such that for each t e K~ ~ K~ t, t e ~ K~ for 
some i, 1 ~ i _~ p. Each of the ~ satisfies p(0q, x) = p(¢,, y) = n. 

We will show that K~ t3 K~ t3... t~ K~ t3 K~ t3 K~is not empty for q = 1,2 . . . . .  
1 n Now it follows from Lemma 5, that for each ~tt there is a point h ~ K~ ~ K~ t3 K~. 

Hence the conclusion is valid for q = 1. Assume the conclusion holds for q - 1. 
a 1 1 Then there exists t e K~ ~ . . .  r~ K~_ ~ n K x  t3 K~. By Lemma 5 we have the 

existence of  t '  in K~ ~ K~ ~K~.  The 2-lines L = ~x, t, y )  and L' = ~x, t', y )  
determine a figure P which is the union of at most two simple closed polygons 
with interior, some of which may degenarete into segments. Since D is simply 
connected, P = D. Now ~x,)  is not contained in P. For then we would have 
~x, y )  = K" contrary to the assumption that x and y cannot be joined by a 2-line 
in K ". 

I f L  and L'intersect at a point ~, v ~ x,y,  then v e K ~  ~ . . .  nK~ n K  1 nK~.  
If L r ~ L ' =  ( x } U { y }  then for one of the lines L (or L') we have 

(x, t(or t'), y) , - ,  {x} ~ {y} ~ I n t P *  where P* is the figure determined by 
n 1 1 (x,t '(or t) ,y) and ~x,y). It is easily verified that t (or t') e K~ t3... ~K~ ~K~ ~K~. 

By induction there is a point o e K~ ~ ... ~K~ C~K~ C~K~ contrary to the 
assumption that the sets ~ K~ cover K~ n K~. 

5. Kernels of  nowhere dense sets. Throughout this section D is nowhere dense 
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in addition to being compact and simply connected. The following result is easy 

to verify and the proof  is ommitted. 

LEMMA 6. Let x, y ~ D. I f  Lp and L~ are p- and q-lines respectively, p < q, 
joining x to y and L = {t: t e L p  OLq} then L is an r-line joining x to y with 
r<=p. 

The following theorems can be proved by applications of  Lemma 6. 

THEOREM 5. Let O be a fu l l  L2n [L2~_I] set; let x, y ~ D  with p (x , y )=2~  
[p(x,y)  = 2n - 1]. If  (x ,cq . . . .  ,ctn,...,ct2n_l,y ) [(x,0t~ . . . . .  cq_l,0~ . .... ,ct2,_2,y) 
is a 2n-line [(2n - 1)-line]joining x to y then at~ e K" [(0~,_ l,~q) = K"].  

THEOreM 6. Let D be a fu l l  L2n [L2n_ 11 set. Then K" is a single point [K R is a 

single segment]. 

THEOREM 7. Let D be a fu l l  L2n[L2n_ 2] set and for  p > n, let K p denote it~ pth 
order kernel; let p = n + q. Then KPis an L2q[L2q+l ] set. 

A basic difference between the cases in which D is nowhere dense and the general 
case is that  in the former, any two points of  D determine a unique path of  fewest 
segments (as Lemma 6 illustrates), whereas this is not  so in the general case. 
Theorems 5 and 6 obviously have no counterparts in the general case. We suspect 
that  Theorem 7 does have an analogue in the general case but have been unable to 
prove this. It  is worth noting that Theorem 6 implies that the nth order 

kernel of  a full L2n[L2n- j ] set is non empty in case D is nowhere dense. This is not 
necessarily true in the general case. For  example, if D is the simply connected set 

determined by a triangle whose sides are extended one unit in each direction, then 
D is a full L 2 set with an empty first order (convex) kernel. 

6. Some conclusing remarks. We conclude with several observations. Simple 
examples show that K ~ might be contained entirely in the interior of  D or entirely 
in tSD, even if D is bounded by a simple Jordan curve. 

It can be shown that if x e D then the boundary of  a component  of D ~ K~ can 
be decomposed into two sets A and B, where A = 6D and B is either a subinterval 
of  a single segment of  an n-line in K:  or empty. No corresponding statement can be 

made for the boundary of a component  of  D ~ K". 
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